ЗАЛІЗОБЕТОННІ КОНСТРУКЦІЇ: ДОПОМІЖНІ ЦЕМЕНТУЮЧІ МАТЕРІАЛИ. ОГЛЯД
DOI:
https://doi.org/10.20535/iwccmm2024302721Ключові слова:
допоміжні цементуючі матеріали, залізобетонні конструкції, працездатність конструктивних елементів, розтріскування бетонівАнотація
Залізобетонні конструкції все більше охоплюють сфери впливу будівництва об’єктів промисловості та інфраструктури кожної країни. Але їх використання супроводжується й поглибленням проблем щодо працездатності, найвагоміша серед яких– структурна деградація під впливом умов експлуатації, а саме: погіршення механічних характеристик та характеристик міцності, розтріскування бетону, корозія сталевої арматури. Термін служби залізобетонних конструктивних елементів визначається якістю бетону та стійкістю проти корозії арматури, пов’язуючи між собою в залежність механічні властивості, руйнування та втомну довговічність. Все це обумовило визначення коло основних проблемних питань, серед яких найактуальніша – вдосконалення компонентного складу бетону. В статті узагальнено основні моменти та наведено результати роботи, отримані науковцями щодо цього питання.
Посилання
Polder, R.B., Peelen, W.H.A. (2002). Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity. Cem. Concr. Compos., 24(5), 427-435. https://doi.org/10.1016/S0958-9465(01)00074-9
Uzal, B., Turanli, L. (2003). Studies on blended cements containing a high volume of natural pozzolans. Cem. Concr. Res., 33(11), 1777-1781. https://doi.org/10.1016/S0008-8846(03)00173-X
Colak, A. (2003). Characteristics of pastes from a Portland cement containing different amounts of natural pozzolan. Cem. Concr. Res., 33(4), 585-593. https://doi.org/10.1016/S0008-8846(02)01027-X
Scott, A.N., Alexander, M.G. (2007). The influence of binder type, cracking and cover on corrosion rates of steel in chloride-contaminated concrete. Mag. Conc. Res., 59(7), 495-505. https://doi.org/10.1680/macr.2007.59.7.495
Ghrici, M., Kenai, S., Said-Mansour, M. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos., 29(7), 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009
Rahmani, H., Ramazanianpour, A.A. (2008). Effect of binary cement replacement materials on sulfuric acid resistance of dense concretes. Mag. Concr. Res., 60(2), 145-155. https://doi.org/10.1680/macr.2008.60.2.145
Siad, H., Mesbah, H.A., Khelafi, H., Kamali-Bernard, S., Mouli, M. (2010). Effect of mineral admixture on resistance to sulphuric and hydrochloric acid attacks in self-compacting concrete. Can. J. Civ. Eng., 37(3), 441-449. https://doi.org/10.1139/L09-157
Angst, U.M., Elsener, B., Larsen, C.K., Vennesland, Ø. (2011). Chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values. Corrosion Science, 53(4), 1451-1464. https://doi.org/10.1016/j.corsci.2011.01.025
De Weerdt, K., Haha, M.B., Saout, G.L., Kjellsen, K.O., Justnes, H., Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res., 41(3), 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014
Motahari Karein, S.M., Ramezanianpour, A.A., Ebadi, T., Isapour, S., Karakouzian, M. (2017). A new approach for application of silica fume in concrete: Wet granulation. Constr. Build. Mater., 157, 573-581. https://doi.org/10.1016/j.conbuildmat.2017.09.132
Meng, W., Kumar, A., Khayat, K.H. (2019). Effect of silica fume and slump-retaining polycarboxylate-based dispersant on the development of properties of portland cement paste. Cem. Concr. Compos., 99, 181-190. https://doi.org/10.1016/j.cemconcomp.2019.03.021
Mehta, A., Ashish, D.K. (2020). Silica fume and waste glass in cement concrete production: А review. J. Build. Eng., 29, 100888. https://doi.org/10.1016/j.jobe.2019.100888
Jahagirdar, A., Pathak S. (2022). Using GGBS, An Experimental Investigation of Concrete Characteristics Was Conducted (Ground Granulated Blast Furnace Slag). IJRASET, 10(V), 5109 - 5113. https://doi.org/10.22214/ijraset.2022.43606
Duan, P., Shui, Z., Chen, W., Shen, C. (2013). Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials. J. Mater. Res. Technol., 2(1), 52-59. https://doi.org/10.1016/j.jmrt.2013.03.010
Nguyen, L.K., Nguyen, T.T.T., Nguyen, S.T., Ngo, T.Q., Le, T.-H., Dang, V.Q., Ho, L.S. (2023). Mechanical properties and service life analysis of high strength concrete using different silica fume contents in marine environment in Vietnam. J. Eng. Res. https://doi.org/10.1016/j.jer.2023.08.005
Vaysburd, A.M., Emmons, P.H. (2004). Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts. Cement and Concrete Composites, 26(3), 255-263. https://doi.org/10.1016/S0958-9465(03)00044-1
Juenger, M.C.G., Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. Cem. Concr. Res., 78(А), 71-80. https://doi.org/10.1016/j.cemconres.2015.03.018
Zeyad, A.M., Khan, A.H., Tayeh, B.A. (2020). Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers. J. Mater. Res. Technol., 9(1), 806-818. https://doi.org/10.1016/j.jmrt.2019.11.021
Shekarchi, M., Rafiee, A., Layssi, H. (2009). Long-term chloride diffusion in silica fume concrete in harsh marine climates. Cem. Concr. Compos., 31(10), 769-775. https://doi.org/10.1016/j.cemconcomp.2009.08.005
Neville, A. (2000). Good reinforced concrete in the Arabian Gulf. Mater. Struct., 33, 655-664. https://doi.org/10.1007/BF02480605
Mazloom, M., Ramezanianpour, A.A., Brooks, J.J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cem. Concr. Compos., 26(4), 347-357. https://doi.org/10.1016/S0958-9465(03)00017-9
Behnood, A., Ziari, H. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cem. Concr. Compos., 30(2), 106-112. https://doi.org/10.1016/j.cemconcomp.2007.06.003
Khan, M.I. (2003). Isoresponses for strength, permeability and porosity of high performance mortar. Build. Environ., 38(8), 1051-1056. https://doi.org/10.1016/S0360-1323(01)00111-1
Imam, A., Kumar, V., Srivastava, V. (2018). Review study towards effect of Silica Fume on the fresh and hardened properties of concrete. Adv. Concr. Constr., 6(2), 145 - 152. https://doi.org/10.12989/acc.2018.6.2.145
Luo, T., Hua, C., Liu, F., Sun, Q., Yi, Y., Pan, X. (2022). Effect of adding solid waste silica fume as a cement paste replacement on the properties of fresh and hardened concrete. Case Stud. Constr. Mater., 16, e01048. https://doi.org/10.1016/j.cscm.2022.e01048
Ganjian, E., Pouya, H.S. (2009). The effect of Persian Gulf tidal zone exposure on durability of mixes containing silica fume and blast furnace slag. Constr. Build. Mater., 23(2), 644-652. https://doi.org/10.1016/j.conbuildmat.2008.02.009
Karthikeyan, B., Dhinakaran, G. (2018). Influence of ultrafine TiO2 and silica fume on performance of unreinforced and fiber reinforced concrete. Constr. Build. Mater., 161, 570-576. https://doi.org/10.1016/j.conbuildmat.2017.11.133
Cheng, S., Shui, Z., Sun, T., Yu, R., Zhang, G. (2018). Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials. Constr. Build. Mater., 171, 44-53. https://doi.org/10.1016/j.conbuildmat.2018.03.082
Ashish, D.K. (2019). Concrete made with waste marble powder and supplementary cementitious material for sustainable development. J. Clean. Prod., 211, 716-729. https://doi.org/10.1016/j.jclepro.2018.11.245
Anwar, M., Emarah, D.A. (2020). Resistance of concrete containing ternary cementitious blends to chloride attack and carbonation. J. Mater. Res. Technol., 9, 3198-3207. https://doi.org/10.1016/j.jmrt.2020.01.066
Huynh, T.-P., Ho, L.S., Ho, Q.V. (2022). Experimental investigation on the performance of concrete incorporating fine dune sand and ground granulated blast-furnace slag. Constr. Build. Mater., 347, 128512. https://doi.org/10.1016/j.conbuildmat.2022.128512
Ho, L.S., Huynh, T.-P. (2022). Recycled waste medical glass as a fine aggregate replacement in low environmental impact concrete: Effects on long-term strength and durability performance. J. Clean. Prod., 368, 133144. https://doi.org/10.1016/j.jclepro.2022.133144
Kovalenko, Y., Tokarchuk, V., Kovalenko, S., Vasylkevych, O. (2022). Identifying the influence of redispersed polymers on cement matrix properties. Eastern-European Journal of Enterprise Technologies, 118(6). https://doi.org/10.15587/1729-4061.2022.262438
Shen, P., Lu, L., Wang, F., He, Y., Hu, S., Lu, J., Zheng, H. (2020). Water desorption characteristics of saturated lightweight fine aggregate in ultra-high performance concrete. Cem. Concr. Compos., 106, 103456. https://doi.org/10.1016/j.cemconcomp.2019.103456
Guo, K.-Z., Zhang, G.-Z., Li, Y., Yang, J., Ding, Q.-j. (2024). The mechanism of curing regimes on the macroscopic properties and microstructure of ultra-high performance concrete with lightweight aggregates. J. Build. Eng., 82, 108236. https://doi.org/10.1016/j.jobe.2023.108236
Ashish, D.K., Verma., S.K. (2021). Robustness of self-compacting concrete containing waste foundry sand and metakaolin: А sustainable approach. J. Hazard. Mater., 401, 123329. https://doi.org/10.1016/j.jhazmat.2020.123329
Noushini, A., Nguyen, Q.D., Castel, A. (2021). Assessing alkali-activated concrete performance in chloride environments using NT Build 492. Mater. Struct., 54(2), 57-71. https://doi.org/10.1617/s11527-021-01652-7
Köksal, F., Altun, F., Yiğit, İ., Şahin, Y. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr. Build. Mater., 22(8), 1874-1880. https://doi.org/10.1016/j.conbuildmat.2007.04.017
Hasan-Nattaj, F., Nematzadeh, M. (2017). The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica. Constr. Build. Mater., 137, 557-572. https://doi.org/10.1016/j.conbuildmat.2017.01.078
Hasan, K.M.F., Horváth, P.G., Alpár, T. 2021. Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology. Cellulose, 28, 3631-3645. https://doi.org/10.1007/s10570-021-03755-4
Kos, Ž., Kroviakov, S., Kryzhanovskyi, V., Hedulian, D. (2022). Strength, Frost Resistance, and Resistance to Acid Attacks on Fiber-Reinforced Concrete for Industrial Floors and Road Pavements with Steel and Polypropylene Fibers. Materials, 15(23), 8339. https://doi.org/10.3390/ma15238339
Abed, M., Anagreh, A., Tošić, N., Alkhabbaz, O., Alshwaiki, M., Černý, R. (2022). Structural Performance of Lightweight Aggregate Concrete Reinforced by Glass or Basalt Fiber Reinforced Polymer Bars. Polymers, 14(11), 2142 https://doi.org/10.3390/polym14112142